Skip to content

在 Go 语言中,垃圾回收是一个重要的机制,它负责管理内存的分配和释放,确保程序运行过程中不会出现内存泄漏等问题。为了更好地了解和调试 Go 的垃圾回收过程,可以使用以下四种方式

一、GODEBUG='gctrace=1'

package main
func main() {
    for n := 1; n < 100000; n++ {
        _ = make([]byte, 1<<20)
    }
}
$ GODEBUG='gctrace=1' go run main.go

gc 1 @0.003s 4%: 0.013+1.7+0.008 ms clock, 0.10+0.67/1.2/0.018+0.064 ms cpu, 4->6->2 MB, 5 MB goal, 8 P
gc 2 @0.006s 2%: 0.006+4.5+0.058 ms clock, 0.048+0.070/0.027/3.6+0.47 ms cpu, 4->5->1 MB, 5 MB goal, 8 P
gc 3 @0.011s 3%: 0.021+1.3+0.009 ms clock, 0.17+0.041/0.41/0.046+0.072 ms cpu, 4->6->2 MB, 5 MB goal, 8 P
gc 4 @0.013s 5%: 0.025+0.38+0.26 ms clock, 0.20+0.054/0.15/0.009+2.1 ms cpu, 4->6->2 MB, 5 MB goal, 8 P
gc 5 @0.014s 5%: 0.021+0.16+0.002 ms clock, 0.17+0.098/0.028/0.001+0.016 ms cpu, 4->5->1 MB, 5 MB goal, 8 P
gc 6 @0.014s 7%: 0.025+1.6+0.003 ms clock, 0.20+0.061/2.9/1.5+0.025 ms cpu, 4->6->2 MB, 5 MB goal, 8 P
gc 7 @0.016s 7%: 0.019+1.0+0.002 ms clock, 0.15+0.053/1.0/0.018+0.017 ms cpu, 4->6->2 MB, 5 MB goal, 8 P
gc 8 @0.017s 7%: 0.029+0.17+0.002 ms clock, 0.23+0.037/0.10/0.063+0.022 ms cpu, 4->4->0 MB, 5 MB goal, 8 P
gc 9 @0.018s 7%: 0.019+0.23+0.002 ms clock, 0.15+0.040/0.16/0.023+0.018 ms cpu, 4->5->1 MB, 5 MB goal, 8 P
gc 10 @0.018s 7%: 0.022+0.23+0.003 ms clock, 0.17+0.061/0.13/0.006+0.024 ms cpu, 4->6->2 MB, 5 MB goal, 8 P
gc 11 @0.018s 7%: 0.019+0.11+0.001 ms clock, 0.15+0.033/0.051/0.013+0.015 ms cpu, 4->5->1 MB, 5 MB goal, 8 P
gc 12 @0.019s 7%: 0.018+0.19+0.001 ms clock, 0.14+0.035/0.10/0.018+0.014 ms cpu, 4->5->1 MB, 5 MB goal, 8 P
gc 13 @0.019s 7%: 0.018+0.35+0.002 ms clock, 0.15+0.21/0.054/0.013+0.016 ms cpu, 4->5->1 MB, 5 MB goal, 8 P
gc 14 @0.019s 8%: 0.024+0.27+0.002 ms clock, 0.19+0.022/0.13/0.014+0.017 ms cpu, 4->5->1 MB, 5 MB goal, 8 P
gc 15 @0.020s 8%: 0.019+0.42+0.038 ms clock, 0.15+0.060/0.28/0.007+0.31 ms cpu, 4->17->13 MB, 5 MB goal, 8 P
gc 16 @0.021s 8%: 0.018+0.53+0.060 ms clock, 0.14+0.045/0.39/0.005+0.48 ms cpu, 21->28->7 MB, 26 MB goal, 8 P
gc 17 @0.021s 10%: 0.020+0.91+0.64 ms clock, 0.16+0.050/0.36/0.027+5.1 ms cpu, 12->16->4 MB, 14 MB goal, 8 P
gc 18 @0.023s 10%: 0.020+0.55+0.002 ms clock, 0.16+0.053/0.50/0.081+0.023 ms cpu, 7->9->2 MB, 8 MB goal, 8 P

字段含义由下表所示:

字段含义
gc 2第二个 GC 周期
0.006程序开始后的 0.006 秒
2%该 GC 周期中 CPU 的使用率
0.006标记开始时, STW 所花费的时间(wall clock)
4.5标记过程中,并发标记所花费的时间(wall clock)
0.058标记终止时, STW 所花费的时间(wall clock)
0.048标记开始时, STW 所花费的时间(cpu time)
0.070标记过程中,标记辅助所花费的时间(cpu time)
0.027标记过程中,并发标记所花费的时间(cpu time)
3.6标记过程中,GC 空闲的时间(cpu time)
0.47标记终止时, STW 所花费的时间(cpu time)
4标记开始时,堆的大小的实际值
5标记结束时,堆的大小的实际值
1标记结束时,标记为存活的对象大小
5标记结束时,堆的大小的预测值
8P 的数量

二、go tool trace

package main

import (
	"os"
	"runtime/trace"
)

func main() {
	f, _ := os.Create("trace.out")
	defer f.Close()
	trace.Start(f)
	defer trace.Stop()
	for n := 1; n < 100000; n++ {
		_ = make([]byte, 1<<20)
	}
}
$ go run main.go
$ go tool trace trace.out

打开浏览器后,可以看到如下统计:

点击 View trace,可以查看当时的 trace 情况

点击 Minimum mutator utilization,可以查看到赋值器 mutator (用户程序)对 CPU 的利用率 74.1%,接近 100%则代表没有针对 GC 的优化空间了

三、debug.ReadGCStats

package main

import (
	"fmt"
	"runtime/debug"
	"time"
)

func printGCStats() {
	t := time.NewTicker(time.Second)
	s := debug.GCStats{}
	for {
		select {
		case <-t.C:
			debug.ReadGCStats(&s)
			fmt.Printf("gc %d last@%v, PauseTotal %v\n", s.NumGC, s.LastGC, s.PauseTotal)
		}
	}
}
func main() {
	go printGCStats()
	for n := 1; n < 100000; n++ {
		_ = make([]byte, 1<<20)
	}
}
$ go run main.go

gc 3392 last@2022-05-04 19:22:52.877293 +0800 CST, PauseTotal 117.524907ms
gc 6591 last@2022-05-04 19:22:53.876837 +0800 CST, PauseTotal 253.254996ms
gc 10028 last@2022-05-04 19:22:54.87674 +0800 CST, PauseTotal 376.981595ms
gc 13447 last@2022-05-04 19:22:55.87689 +0800 CST, PauseTotal 511.420111ms
gc 16938 last@2022-05-04 19:22:56.876955 +0800 CST, PauseTotal 649.293449ms
gc 20350 last@2022-05-04 19:22:57.876756 +0800 CST, PauseTotal 788.003014ms

字段含义由下表所示:

字段含义
NumGCGC 总次数
LastGC上次 GC 时间
PauseTotalSTW 总耗时

四、runtime.ReadMemStats

package main

import (
	"fmt"
	"runtime"
	"time"
)

func printMemStats() {
	t := time.NewTicker(time.Second)
	s := runtime.MemStats{}
	for {
		select {
		case <-t.C:
			runtime.ReadMemStats(&s)
			fmt.Printf("gc %d last@%v, heap_object_num: %v, heap_alloc: %vMB, next_heap_size: %vMB\n",
				s.NumGC, time.Unix(int64(time.Duration(s.LastGC).Seconds()), 0), s.HeapObjects, s.HeapAlloc/(1<<20), s.NextGC/(1<<20))
		}
	}
}
func main() {
	go printMemStats()
	fmt.Println(1 << 20)
	for n := 1; n < 100000; n++ {
		_ = make([]byte, 1<<20)
	}
}
$ go run main.go

gc 2978 last@2022-05-04 19:38:04 +0800 CST, heap_object_num: 391, heap_alloc: 20MB, next_heap_size: 28MB
gc 5817 last@2022-05-04 19:38:05 +0800 CST, heap_object_num: 370, heap_alloc: 4MB, next_heap_size: 4MB
gc 9415 last@2022-05-04 19:38:06 +0800 CST, heap_object_num: 392, heap_alloc: 7MB, next_heap_size: 8MB
gc 11429 last@2022-05-04 19:38:07 +0800 CST, heap_object_num: 339, heap_alloc: 4MB, next_heap_size: 5MB
gc 14706 last@2022-05-04 19:38:08 +0800 CST, heap_object_num: 436, heap_alloc: 6MB, next_heap_size: 8MB
gc 18253 last@2022-05-04 19:38:09 +0800 CST, heap_object_num: 375, heap_alloc: 4MB, next_heap_size: 6M

字段含义由下表所示:

字段含义
NumGCGC 总次数
LastGC上次 GC 时间
HeapObjects堆中已经分配的对象总数,GC 内存回收后 HeapObjects 取值相应减小
HeapAlloc堆中已经分配给对象的字节数,GC 内存回收后 HeapAlloc 取值相应减小
NextGC下次 GC 目标堆的大小

木川工作室 (微信:mcmc2024)